If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2w^2-50=0
a = 2; b = 0; c = -50;
Δ = b2-4ac
Δ = 02-4·2·(-50)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20}{2*2}=\frac{-20}{4} =-5 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20}{2*2}=\frac{20}{4} =5 $
| 31/4p=5 | | 3.3x-13.58=8.2 | | 2/7y+5=-7 | | 2^(x-1)+2^(x-2)+2^(x-3)=112 | | -5(x+5)=-3x-23 | | 8w+4=-9(w-8) | | 10/11=a+4/11 | | 3+b=28 | | 7(w-4)=-4w+38 | | -24-15y=-4 | | 91=13(-7x-42) | | -n-6=-8 | | 7-7x-4=-15+4x-15 | | 50x=7000+15x | | b^2+3b+b+3=0 | | 3x+7=12-2× | | 4x+1=7×-3 | | X-2y=37 | | 3+¼(x-4)=2/5(2+3x) | | -4=4(y+2)-8y | | 120=-4x+2(-3x+25) | | -34=4(v-7)+2v | | 5-(x-11)=6(x+10) | | 5(u+3)-2u=24 | | 2y-3/4=y-3/6 | | -3x+51=-36 | | 4-(x-11)=8(x+6) | | 2.9x=17.4 | | (6r+2)-(3r+5)=-18r+123 | | -16t^2+50t-36=0 | | 0.08k-0.2(k+5)=-0.1 | | .7x+.7=2.1 |